手机浏览器扫描二维码访问
柯西的办公室,也是他工作的地方。
满屋子堆满了信件和纸张。
有论文,草稿,还有外面的人给自己的信件。
论文有自己的,有学生的,还有收集的同行的。
草稿有计算的,设计的,画图的,已经用完的和用到半中间的。
信件有同行的,有有梦想的人的新想法,还有民科的垃圾文。
柯西一开始还可以应付这些东西,但随着量的增加,只能是有哪个看哪个的了。
他苦恼于自己敢接如此庞大的活。以为可以发现人才,交流思想,但是自己根本没有那么多精力。
柯西开始研究关于复数坐标系中的微积分。
如果在复数里,那种微积分就需要借鉴一种多元的方程的微积分的思想。
严格的柯西必须要弄清楚其中微积分的条件。
在二维直角坐标系的直线中需要连续可导,但在三维以上的坐标系中的可微,就麻烦了,它起码是两个以上的方向了。
柯西找到了f(z)=u(x,y)+iv(x,y)这种类型的复变函数,经过多次的验证,自己证明了对u这个方程求x次导数等于对v求y次导数,同时对u求y次导数等于负的对v求x次导数时,这个方程可以微分。
这也叫柯西条件。
这个方程组最初出现在达朗贝尔的着作中。
后来欧拉将此方程组和解析函数联系起来。
然后柯西采用这些方程来构建他的函数理论。
后来黎曼也证明的这个情况。
黎曼关于此函数理论的论文于1851年问世。
而脑洞大的黎曼在想,万一有f(z)=u(x,y)+iv(x,y)+jw(x,y)这样的怪东西,会有什么样的对称现象?
是对u求x次导数,等于v求y次导数,不对,不对称这个。
重来一遍。
是对u和v求x次导数等于,对w求y的导数;对v和w求x次导数等于对u求y次导数;对u和w求x次导数等于v求y次导数?和对u和v求y次导数等于,等于负的对w求x的导数;对v和w求y次导数等于负的对u求x次导数;对u和w求x次导数,等于负的v求x次导数?可以出现这样的轮换对称,那实数,i和j之间到底是什么?
这个j是后来的汉密尔顿发现的四元数这样的东西吗?
这样的对称性的这种公式可以存在并且对称吗?
那对于f(w)=u(x,y,z)+iv(x,y,z)这样个公式呢?这是个什么鬼?
黎曼一个走神,又想到了其他问题,把这个忘了。
柯西脑子里仅仅有一堆高维空间可微的样子,心里害怕,便不敢去触碰了。
喜欢数学心请大家收藏:()数学心
混迹娱乐圈的日子 国运:拥有多重身份的我很合理吧 至尊战皇 我的徒弟不对劲 大明:开局气疯朱元璋,死不登基 重生在宝可梦,我的后台超硬 快穿之炮灰得偿所愿 新人驾到 玄灵界都知道我柔弱可怜但能打 农夫是概念神?三叶草了解一下! 我一枪一剑杀穿大陆 穿成商户女摆烂,竟然还要逃难! 暗无 译文欣赏:博伽瓦谭 哦豁!虐文炮灰不干了! 宗门全是美强惨,小师妹是真疯批 穿到八零,我自带锦鲤系统! 摊牌了,我爹是绝顶高手! 在下潘凤,字无双 永恒大陆之命运
一觉醒来发现身边多了个没穿衣服的美女,这个美女竟然是金庸笔下的黄蓉。而且还是少女时期的黄蓉。莫名其妙的得到了黄蓉的身心,有些木讷的小人物顿时发生了变化。挨欺负了不用咱出手,有黄MM的打狗棒法帮咱出气。想成为武林高手?没问题。桃花岛武功随便学,打狗棒法随意耍,九阴真经纵横大都市总之有了黄蓉这个伪师父,真老婆之后,一切都变的精彩了!...
药不成丹只是毒,人不成神终成灰。天道有缺,人间不平,红尘世外,魍魉横行哀尔良善,怒尔不争规则之外,吾来执行。布武天下,屠尽不平手中有刀,心中有情怀中美人,刀下奸雄冷眼红尘,无憾今生。惊天智谋,踏破国仇家恨铁骨柔肠,演绎爱恨情仇绝世神功,屠尽人间不平丹心碧血,谱写兄弟千秋!...
流氓少爷实际上就是流氓少爷尘世游只不过作者名字不同,但至尊包不同和至尊风流就是同一个人,流氓少爷已经完本了,但两本书基本是一样的,只是章节数字不同而以。所以就同时把两书的章节数字标出此书记录S省富家少爷夏丰银玩转都市,风流逍遥的过程,全书以YY为主,以使读者浴血沸腾为目标,那些自命清高者可以不看!没有最淫荡,只有更淫荡!要想成淫才,快到此处来...
从农村考入大学的庾明毕业后因为成了老厂长的乘龙快婿,后随老厂长进京,成为中央某部后备干部,并被下派到蓟原市任市长。然而,官运亨通的他因为妻子的奸情发生了婚变,蓟原市急欲接班当权的少壮派势力以为他没有了后台,便扯住其年轻恋爱时与恋人的越轨行为作文章,将其赶下台,多亏老省长爱惜人才,推荐其参加跨国合资公司总裁竞聘,才东山再起然而,仕途一旦顺风,官运一发不可收拾由于庾明联合地方政府开展棚户区改造工程受到了中央领导和老百姓的赞誉。在省代会上,他又被推举到了省长的重要岗位。一介平民跃升为省长...
一个无父无母的孤儿,一个被最有钱的女人领养的孤儿可是自卑彷徨的他却喜欢上了跟自己身份截然不同的人。可惜他却在跟最有钱的女董事长发生不能说的秘密之后一切都变了。各色各样的大小美人纷扰而至,围绕在他的身边!成熟美艳,清纯可爱,性感妩媚,柔情万千最后的最后,他凭借着自己的能力,在那多少美人美妇的陪伴之下,在这一片弱肉强食的世界之中创下了一个伟大的奇迹!...
全本免费,新书斗罗无敌从俘获女神开始斗罗之收徒就变强斗罗之酒剑斗罗王圣穿越到了斗罗1的世界之中,在觉醒武魂的那一天,竟然是先天二十级的魂力。看王圣如何组建属于他自己的7怪。当他的7怪与唐三的7怪相遇时,又会是怎样的一个场面?谁强?谁弱?谁才是真正的主角!粉丝群1304623681...