手机浏览器扫描二维码访问
在篮球场上,他和朋友正在酣畅淋漓地打球。而他每次都能投进篮筐,他的秘诀就是现场估算。没错,你猜对了。他就是运用数学知识快速计算出来的,而且误差只有一厘米。他惜时如金,我就不再说什么。埃斯皮诺萨就这样说完了。
很快,就有人进来了。他说:我叫北雁海,来自西南。相信大家都看看听过三角形数,其实就是把三边的长度的数值抽象出来。如此一来,就有四边形数等等的数。以每一组三角形数为元素就可以构成一个集合,它叫做三角形数集合。同理可以得到四边形数集合。我的问题很简单,就是三角形数集合与四边形数集合的关系。
小尼非常踊跃:首先可以排除四边形数集合不是三角形数集合的子集,那么反过来可不可以呢?在三角形数集合中有集合{3,4,5},让四边形的三条边等于3、4、5。因为它们是直角三角形的三边长度,所以它们不能两两挨着。然而,这是不可能的。这个集合是不属于四边形数集合中的一个的,因此,三角形数集合并不是四边形数集合的子集。
那么,是不是所有的三角形数集合都不是四边形数集合的子集呢?不是的。有集合s={3,3,3}是三角形数集合。令一个四边形的三条边的长度都是3,可以解得第四边。第四边的长度可以是三,也可以是四。这样就可以得到一个四边形数集合。为了叙述方便,第四边的长度为四。于是就有集合t={3,3,3,4},所以s?t。由此,我可以说一些三角形数集合是对应的四边形数集合的子集。
北雁海问:三角形数集合的全集和四边形数集合的全集中的净元素是一样的吗?什么是净元素呢?以小尼提到的集合t为例,3和4就是净元素。现在,大家开始发表自己的看法吧?
埃斯皮诺萨就说:如果三角形数和四边形数都规定为整数,那么它们的集合的净元素一定是不一样的。不过,有重合的数就是肯定的。
北雁海又说:大家觉得三角形数集合和四边形数集合的个数是一样多的吗?
埃斯皮诺萨说:三角形更加容易满足,四边形的条件相对苛刻。我认为三角形数的集合更多。
艾丽西亚说:不对。数是无限的,它是没有尽头的。在理论上,所有的多边形数的集合都是一样多的。
小尼说:我觉得这个不是表面看起来的这样。你以为三角形只有三条边,似乎条件要少一些。可是你不要忘记三角形对三边的长度有明确的规定,比如两边之和大于第三边和两边之差小于第三边。而四边形显然就没有对它边长约束的条件,所以这么看来四边形比三角形更容易构成。也就是说,四边形数集合的数量更多。
北雁海口曰:看来大家对这个问题有很大的分歧。如果有机会,我们下次讨论。
魏紫风澹渊 开局中奖一亿,我成了资本大佬 王牌团宠:小娇妻又被扒马甲了 谢瑶楚寒 武炼虚空 魔王大人竟是我林立 这个主角明明很强却异常谨慎 山里来的小帅医 掌上倾华 逆袭天师 魔兽之亡灵召唤 我在异界当兽医 墨北枭苏小鱼 皇神纪 桃源小巫医 贞观憨婿 傲娇王爷宠不停魏紫风澹渊 最强小前锋 苏辰唐依晨 大明:我重生成了朱允炆
一个失业失恋的落魄男子,遇上一个奇怪的老人,加上一个奇怪的项链之后,金钱,美女,似乎全都是从天而降,而事情却又没有这么简单,这一切,需要有魂灵去修炼!...
吃货林思念重生到了八零年,面对这桩谋算来的婚姻,男人的冷漠,她却像打了鸡血似的,誓要把男主拿下。男人的冷漠与误会让她终于有了离开的想法,可军婚不好离,她不信邪的为离婚奋斗着。可这冷漠的男人从什么时候起,紧紧的追着她的脚步,还恬不知耻的要和她生儿子。呸,谁要和你生儿子?你有儿子了好不好,要生也是生一个像她一样漂亮可爱...
本书又名你是我戒不掉的甜秦南御第一次遇见纪微甜,丢了重要信息。秦南御第二次遇见纪微甜,丢了相亲对象。秦南御第三次遇见纪微甜,丢了人如果有人问他,最厌恶的异性类型是什么样的,他会毫不犹...
别被书名骗了,取名废,其实就是女强无CP,村姑背景系统逆袭流,也俗称慢穿泥石流,凶杀末世武侠仙侠魔法啥都有,还有,新书820不见不散。官方群满一千粉丝值进(五九零六五三四八三)后援群,满一万粉丝值进VIP群。PS本文无CP...
一个本来庸才的学生,在一次奇遇后,居然成为傲世天才,他发现自己的身世居然是而后面还有天大的阴谋...
左手惊天医术右手至强武功,携带百年记忆,重生回归都市,这一世,定要纵横无敌执掌一切,登临苍穹之巅!...