手机浏览器扫描二维码访问
张树文犹豫了片刻,然后选择站了起来,走到乔喻的身边,随手将最后的板书擦掉,然后开始了现场讲解。
“Riemann-Roch定理是代数几何中的一个基本定理,用于描述代数曲线上某些函数或形式的维度。具体来说,Riemann-Roch定理适用于代数曲线X上的任意除子D,定理陈述代数曲线上与除子D相关联的函数空间L(D)的维数。
它的具体陈述就是(D)=deg(D)+1g+(KD)。它有两个部分互为补充,描述了除子D与剩余部分KD的平衡关系。但有特殊情况,当D的度数足够大时,(KD)为零,所以这种情况下(D)=deg(D)+1g,你明白这代表什么吗?”
“D的度数足够大,维数与度数就是线性关系。”乔喻立刻答道。
“那么当D为零的时候……”
“(0)=1g+(K)……哦,张教授,我明白您的意思了……所以这部分的证明其实可以不用那么繁琐,因为亏格g(X)可以直接通过Riemann-Roch定理得出,咦,那这部分的证明就不那么麻烦了……让我想想……”
说完,乔喻拿起了粉笔,开始在黑板另一边书写。
“也就是说构建函数的时候……嗯,dimQH1(Cp是量子化后的同调群维数,嗯,取决于曲线的亏格g和量子算符Q……这部分可以通过计算典范因子,得到H1(Cp)的维数……
所以分解后的维数关系直接就是dimQH1(Cp)=gf(Q),张教授,您看这部分的推导这样对不对?”
张树文深吸了口气,让自己表情没有一丝动容,然后点了点头。
“太好了,那下一步就好证明了……推导出同调群的维数后,那么量子化同调群的维数越大,就代表曲线几何复杂性越高,曲线上的有理点个数就会受限,再加上Jacobian又能进一步影响有理点个数……
亏格是最核心的几何不变量之一,不能简化,那么#C(K)≤f(g,Jac(Cp))?呼,不是,这样看的话,我感觉这个方法好像真能把常数C的公式给推导出来啊?”
乔喻下意识的感慨道。
真的,台下的陈卓阳听到乔喻这句话,都懵了。
虽然他同样被乔喻的悟性震撼着,但听到这句话大家真不生气么?
压根没百分百信心证明出来的东西,你还敢接受45分钟的研讨会?
只是看到会议室没人在乎的样子,陈卓阳自然也不可能说什么。
而台上,张教授则是冷哼了一声,说道:“还早呢,我相信你能证明出来,甚至还能得到一个你想要的公式!但是那些真的有用吗?!你最起码得简化到#C(K)≤f(g)这一步才有意义!
引入彼得·舒尔茨的理论是可以的,数学的证明过程只要是框架内的逻辑,多繁复抽象都可以,但你要把所有的复杂性限制在证明的中间步骤!
最终的结果必须要尽量简化!否则的话,你就算证明出来了常数C,并推导出了结果,把那么多设定的常数带入进去,你自己想想最终的公式会有多复杂?其他人怎么去利用?
真正的数学追求的是思维复杂化,结果简洁化,只有简洁的结果才是真正有用且优雅的数学工具!过多的常数或参数只会增加理解和计算的难度,即便研究出来也是垃圾!数学没有你想的那么简单!”
……
张树文语气极为严厉,但田言真坐在那里看上去心情却很愉悦。
罗伯特·格林终于忍不住凑过来问道:“田教授,张教授在跟那个孩子说什么?”
刚刚乔喻在介绍他的想法时用的是英文,但等到张树文上去指点乔喻的时候,已经开始用中文了。
“他教育乔喻不要得意忘形,在告诫孩子他现在提出的只是想法,距离出成果还远,以及数学结论必须简洁化的道理。”田言真笑着解释道。
“哦!上帝呐,张的要求那么严格吗?他难道不知道这个孩子才十五岁?十五岁啊,他竟然真能看懂舒尔茨的理论,还能畅想出如此有创意的想法,张竟然还觉得不够?他是疯了吗?我甚至觉得这的确是一个未来非常值得期待的研究方向。”
罗伯特·格林困惑的说道,显然从这位纽约大学教授的角度看来,张树文太过严厉,对乔喻的要求更是太过苛刻了。
“对,这也是我一定要举办这次研讨会的原因,我也觉得这是一种很值得期待的可能。不过目前这孩子想独立完成这个命题还稍微难了点。所以我其实很感谢张教授,起码他告诉了乔喻在数学层面做减法有时比证明过程本身要难许多的道理。”
田言真嘴角噙着一丝笑意,帮着张树文解释道。
“虽然张说的道理非常正确,但完全不需要用如此严厉的语气,这对一个十五岁的孩子来说并不公平。”
罗伯特·格林依然无法理解,毕竟如果乔喻是他的学生,他绝不可能如此不讲情面。
虽然听不懂张树文说了什么,但他能听出那语气甚至可以说是冷酷的。
“我们华夏有句话叫爱之深,责之切。如果不是特别看好,以他的性格甚至懒得多跟这孩子说一句废话。”
说着,田言真忍不住笑出了声,虽然很压抑:“呵呵,张教授大概在心里惋惜,他没碰到这样的学生吧?其实我还要感谢张教授,本来这些话我下午也想跟这孩子说的,但怕打击到他的积极性。”
罗伯特·格林摇了摇头,华夏人的思维模式太古怪了,他理解无能。自己不指出问题,却感谢别人更为严厉的去指出问题?所以别人去说就不会打击到一个孩子的积极性了?
1977,开局女知青以身相许 税收只在机枪射程内! 我一个兽医啊!你解锁大医系统! 灵气复苏:烤肠摊主竟是满级大佬 1986:学霸的黄金年代 美食:开局女子学院售卖卤肉饭 出殡日你没时间,我重生崛起你发疯 离婚后掉马,温总他想父凭子贵 让你讲故事,没让你说犯罪经历 军途:从一封征兵信邮寄开始 穿书七零:娇妻有点辣 妻子出轨之后,跪着求我原谅 重回18岁,清冷学神藏不住了 舔狗十年,我抽身而退她却疯了 靠毛茸茸续命后,真千金带飞祖国 直播看诊?我读毛茸茸成缉凶高手 我,恶毒女配,不走剧情很合理吧 边水岁月 重回六零,我能获得宝藏情报 穿进年代短剧,炮灰工具人不干了
作为醉月楼唯一一个男人,杨辰觉得压力很大。通过我洗的衣服来判断,李姐姐胖了两斤,王姐姐瘦了点,还有,能不能别让马姐姐穿那么性感的衣服,我洗衣服压力很大的。杨辰需要每天像老鸨这样汇报着工作。除此之外,他还要严守自己的贞操。杨辰,今天晚上来侍寝!让姐姐亲一个!记住,别躲,今晚,你是我的。...
...
他是绝世炼丹天才,因生来不能修炼武道,遭到自己最亲近的女人背叛杀害,转世重生于一个被人欺凌的废材少年身上。废材?天才?笑话,这万界内没人比他杨辰更了解培养天才!武道?丹道?双修又有何难!成就妖孽之道一路逆袭!极我逸才铸神体,荡尽不平!以我璀华炼仙丹,万界颤抖!...
格斗,医术,算命,鉴宝,泡妞无一不精。嚣张,霸气,睿智,重情,重义集于一身。水有源,树有根!他就是世界最强者的唯一门徒!从此,最狂门徒诞生!慕容2015都市新作,请大家多多支持!慕容官方交流群慕容世家167168067另,慕容完本作品特种高手纵横都市还请大家多多支持!...
为了躲避一个美女疯狂的纠缠,叶权宇在好友的帮助下偷偷来到日本,光荣地成为了圣樱花女子高中的第一名男学生,原本只想平静读完高中的他,面对一群萌萌的少女,生活又怎么可能平静得了?交流群号2746792欢迎大家前来交流吐槽!...
元祖破天战诸界,青血染天万古流帝钟敲日震寰宇,一肩担尽古今愁!一个地球小子,得无上传承,他踏遍诸天万界,他会尽亿万天骄!他一点点的寻找地球先辈的足迹,焱灭鸿蒙界,炎帝已成了亘古传说,极道星辰界,秦蒙二字已成了禁忌,九源浑天界,罗城主已化为了不朽雕塑,荒古断天界,荒天帝已消失在万古时空中作者自定义标签豪门位面嚣张重生...