手机浏览器扫描二维码访问
……
“……你看,这样就是一个椭圆曲线了。不过不是一般的圆锥曲线中的椭圆,而是域上亏格为1的光滑射影曲线。如果特征不等于2的话,那么仿射方程就是y^2=x^3+ax^2+bx+c。
那个BSD猜想的前置条件你肯定还记得吧?复数域上的椭圆曲线为亏格为1的黎曼面,整体域上的椭圆曲线是有限生成交换群。阿贝尔簇是椭圆曲线的高维推广。
所以这个时候我感觉就要把椭圆曲线化成魏尔斯特拉斯形式。这是我看了很多相关理论之后才找到的方法。这种变形就属于很机械的操作,前提条件是方程至少存在一个有理数点。
但显然这一步是成立的,之前我们已经证明了,所以我们就能得到这两个公式……”
乔喻一边说,一边在小桌板上用笔写着。
兰杰则认真听着,脖子脖子伸得老长,去看乔喻的整体解题过程,以及随手用坐标系画出的平面图。
“……很显然,我们现在得到了一条有着两个实部的经典椭圆曲线。右边的线,明显是连续延伸至正负无穷,左边的封闭椭圆曲线就是求解的关键了,给定这个方程任意解,都可以用等式还原我们要求的数值。”
“这一步最关键的地方就在于三元组(a:b:c)必须是投影曲线,这才可以随便乘什么常数,都能让方程成立。接下来就要用到双向有理等价了,我就直接在这个椭圆曲线上找一个最方便求解的有理数点,再带入原方程,就能求出解了。
其实到了这一步就简单了,椭圆曲线理论中,弦切技巧是生成新的有理数点的关键工具嘛。只要在椭圆曲线上找到两个已知的有理数点:P1跟P2,就能通过加法生成新的有理数点。
接下来就是直接在构造切线了,这个时候就自然形成了一个阿贝尔群,我们要引入O这个群中的零元,根据规则,任何一个点P跟O相加时结果依然是P。
……我们再通过作P点的切线,找到P跟曲线再次相交的点,然后再计算,如果得不到整数解,就继续用连接P和2P找到与曲线的第三个交点再与O点相连找到第四个交点,不行就重复这个步骤找第五个交点……
总之就是重复这个步骤,一直到找到对应的整数解为止。不过这一步靠手算肯定不行了,只能用电脑来算,找到那个值后,再用几何程序进行迭代。
最后计算9P才是整数,然后就是用得到的9P的值,做9次几何程序迭代,最后就能得出上述这个方程a,b,c的值了。整个解题思路就是这样。”
……
乔喻一口气讲了整整一个小时,只觉得口干舌燥,讲完之后,直接拿出插在前面座椅背上的矿泉水,狠狠地灌了几口。才开问道:“咋样,兰老师,你觉得我这种解法有普适性吗?”
兰杰回过神来,看了一眼乔喻,没有第一时间回答。
毕竟要判断出这种解法有没有普适性,首先他得完全理解这种解法。
让乔喻讲解,是因为他本以为乔喻在解这个方程时,不会用到太过复杂的数论方面内容。毕竟乔喻给他的印象一直是有天赋,但并没有针对数学系统的学习过。
而他不一样,大学时候也是系统学过抽象代数,数论入门这些课程的,不至于听不懂。
但显然他错了。
听乔喻讲解的时,他甚至回想起大学那段青葱岁月,被高级代数几何所支配的恐惧。
什么射影几何,模空间是真的让人很头大。他拼了命学最后也只是勉强过关,拿到了学分。当然班上也有很多厉害的同学,随随便便学学就能拿满分的。
这也是他研究生阶段选择组合数学,毕业之后回到星城当了个高中数学老师的原因。
真不是他不想做科研,继续读博士,然后争取能在高校当老师。
主要还是能力有限,真读不动了。
所以他是真没完全听懂乔喻求解这个方程的思路。
众所周知,如果要判断数学上某个求解方法对一类方程是否具备普适性,首先得完全理解整个求解思路。
这就很尴尬了。
本以为凭借他在大学积累的数学知识,听完乔喻现场讲解之后,肯定能给出一个答案的。
但现在他需要在丢人跟想办法掩饰之间做出一个选择。
大概沉吟了十秒钟后,兰杰选择了坦诚。
因为他是真不太会装。
“乔喻,说实话,我的水平不够,没法判断……所以这个问题你只能自己去尝试了。找几个同类的方程,用你这种方法去求解,如果最后都能得出正确答案的话,就可以动笔写论文了。
论文具体怎么解决问题,我没办法帮你。但我可以教你论文具体该怎么写。毕竟数学论文的撰写是有着特定的格式跟行文要求的,也有一些常见的通用标准。”
税收只在机枪射程内! 美食:开局女子学院售卖卤肉饭 穿书七零:娇妻有点辣 灵气复苏:烤肠摊主竟是满级大佬 妻子出轨之后,跪着求我原谅 靠毛茸茸续命后,真千金带飞祖国 重回18岁,清冷学神藏不住了 让你讲故事,没让你说犯罪经历 穿进年代短剧,炮灰工具人不干了 出殡日你没时间,我重生崛起你发疯 军途:从一封征兵信邮寄开始 舔狗十年,我抽身而退她却疯了 离婚后掉马,温总他想父凭子贵 边水岁月 我一个兽医啊!你解锁大医系统! 1977,开局女知青以身相许 重回六零,我能获得宝藏情报 直播看诊?我读毛茸茸成缉凶高手 1986:学霸的黄金年代 我,恶毒女配,不走剧情很合理吧
从农村考入大学的庾明毕业后因为成了老厂长的乘龙快婿,后随老厂长进京,成为中央某部后备干部,并被下派到蓟原市任市长。然而,官运亨通的他因为妻子的奸情发生了婚变,蓟原市急欲接班当权的少壮派势力以为他没有了后台,便扯住其年轻恋爱时与恋人的越轨行为作文章,将其赶下台,多亏老省长爱惜人才,推荐其参加跨国合资公司总裁竞聘,才东山再起然而,仕途一旦顺风,官运一发不可收拾由于庾明联合地方政府开展棚户区改造工程受到了中央领导和老百姓的赞誉。在省代会上,他又被推举到了省长的重要岗位。一介平民跃升为省长...
元祖破天战诸界,青血染天万古流帝钟敲日震寰宇,一肩担尽古今愁!一个地球小子,得无上传承,他踏遍诸天万界,他会尽亿万天骄!他一点点的寻找地球先辈的足迹,焱灭鸿蒙界,炎帝已成了亘古传说,极道星辰界,秦蒙二字已成了禁忌,九源浑天界,罗城主已化为了不朽雕塑,荒古断天界,荒天帝已消失在万古时空中作者自定义标签豪门位面嚣张重生...
龙血部队兵王狂龙因违反规定,被迫回到中海。本想低调做人,却偶遇美女总裁让自己睡了她,哪知道被卷入一场莫名的争斗,成为了她的贴身保镖。叶轻狂从此龙入花海,身边美女如云,但也麻烦不断读者群527212401...
(都市热血小说)叶龙曾是世界上公认的文武奇才,所到之处,再强大的敌人也得望风而逃。然而,就是这样的叱咤风云人物却突然放弃耀眼光环,回到灯红酒绿的都市保护大小姐!他性格冷酷张狂,为达到目的不择手段!凭借惊人的本能和超人的智力,在繁华的天骄市上演一场激情四射的热血人生!PS本书读者群128492045(豆丹家族)...
这是一条成魔之道ltBRgt杨小天既然走上了这样的一条道路ltBRgt就决不回头ltBRgt不论前途怎么样ltBRgt都要面对它ltBRgt他一定要成为至尊ltBRgt武林的至尊ltBRgt江湖的至尊天下的至尊ltBRgt成王败寇ltBRgt成功了ltBRgt他就是名传千古的霸主失败了他就是遗臭万年的恶魔...
当秦奋手机微信摇出了天庭朋友圈,他发现自己的人生变了,但天庭的变化更惊悚。想要金点子,行,拿东西来换,我不挑食。超市,串串香,等一系列熟悉的东西对原有的天庭造成了冲击。秦奋看着天庭的物产,发现自己似乎要发了。种田,数钱,好多事要做。我是先吃蟠桃呢,还是九转金丹。签已过,人品嘛,我很有节操可以吗?求点求收求票票,求包...